Bayesian Clustered Ensemble Prediction for Multivariate Time Series¹

Shonosuke Sugasawa

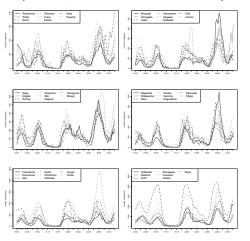
Faculty of Economics, Keio University

BIBC 2025

¹Joint work with Genya Kobayashi, Yuki Kawakubo, Dongu Han, Taeryon Choi

Motivating Data

Weekly number of inpatients for COVID-19 by prefecture in Japan (from April 2021 to November 2022)



47 prefectures are grouped by the means of the series.

Motivating Data

Characteristics of the data

- Multiple time series count data for 47 prefectures
- Cross section and temporal correlation

Purpose of data analysis

- Precise future prediction on the number of inpatients
- Uncertainty quantification of the prediction

Strategy

■ Ensemble prediction

In stead of relaying on a single model, combining multiple models is known to improve predictive performance.

Bayesian Predictive Synthesis (BPS)

BPS for univariate time series, y_t (t = 1, ..., T)

- J models (agents) with the predictive density, $h_{tj}(f_{tj})$ (j = 1, ..., J)
- General form of BPS (e.g. West, 1992; McAlinn and West, 2019)

$$p(y_t|\boldsymbol{\theta}_t, 1:t) = \int \alpha(y_t|\boldsymbol{f}_t, \boldsymbol{\theta}_t) \left[\prod_{j=1}^J h_{tj}(f_{tj}) \right] d\boldsymbol{f}_t$$

- $\theta_t = (\theta_{t0}, \theta_{t1}, \dots, \theta_{tJ})$: weights for J predictive models
- $\mathbf{f}_t = (f_{t1}, \dots, f_{tJ})^{\top}$: draw from the predictive densities, regarded as latent factors
- $\alpha(y_t|f_t,\theta_t)$: synthesis function that controls how to combine J predictions
- BPS includes existing ensemble methods (e.g. Bayesian model averaging) by appropriately specifying the synthesis function.

Bayesian Predictive Synthesis

Specification of the synthesis function

Dynamic linear model with latent factor (McAlinn and West, 2019)

$$\alpha(y_t|\mathbf{f}_t, \boldsymbol{\theta}_t) = \phi(y_t; \theta_{t0} + \sum_{j=1}^J \theta_{tj} f_{tj}, \sigma_t^2), \quad \boldsymbol{\theta}_t \sim \text{random walk}$$

 $\phi(x; a, b)$: normal density with mean a and variance b

- BPS for multivariate time series, y_{it} (i = 1, ..., n; t = 1, ..., T) (McAlinn et al., 2020)
 - Use multivariate dynamic linear models as the synthesis function.
 - Computationally intensive when n is large (n = 47 in our example).
- Methodological motivation: Any scalable approach for multivariate time series (of count)?

Proposal: Mixture of BPS

Idea: (soft) clustering multiple time series in terms of model importance

- *J* predictive models with the predictive densities $h_{itj}(f_{itj})$ (i = 1, ..., n; j = 1, ..., J).
- Mixture of BPS (MBPS)

$$\alpha(y_{it}|\mathbf{f}_{it},\boldsymbol{\theta}_{t,1;K},\boldsymbol{\pi}_{1:K}) = \sum_{k=1}^{K} \pi_k \alpha_k(y_{it}|\mathbf{f}_{it},\boldsymbol{\theta}_{tk}), \quad \sum_{k=1}^{K} \pi_k = 1$$

- $\alpha_k(y_{it}|\mathbf{f}_{it},\boldsymbol{\theta}_{tk})$: kth component of the synthesis function
- θ_{tk} : Parameters in the kth synthesis function
- MBPS reduces the number of parameters in multivariate BPS while sharing cross sectional information

Proposal: Mixture of BPS

Structure of MBPS

- For two time series i and i' in the same cluster k, MBPS places the same weight θ_{tjk} on jth model whose forecasts are generally different between i and i'.
 - \Rightarrow Clustering *n* series in terms of the importance of the *k*th model
- Within the same cluster, the contribution of the models to the BPS forecast is the same.
- The weights θ_{tk} are estimated from the set of time series belonging to the same component.

Model Specification

- Consider a synthesis function based on the Poisson distribution as y_{it} is count in our example.
- Cluster assignment indicator, $z_i \in \{1, ..., K\}$ for each time series
- Hierarchical model of MBPS for count response

$$y_{it}|(z_i = k, \boldsymbol{\theta}_{tk}, \boldsymbol{f}_{it}) \sim \operatorname{Po}(\exp(\boldsymbol{\theta}_{tk}^{\top} \boldsymbol{F}_{it})), \quad \boldsymbol{F}_{it} = (1, \boldsymbol{f}_{it}^{\top})^{\top}$$
 $\operatorname{Pr}(z_i = k) = \pi_k, \quad k = 1, \dots, K, \quad (\pi_1, \dots, \pi_K) \sim \operatorname{Dir}(a_0)$
 $f_{itj} \sim N(m_{itj}, s_{itj}^2), \quad \boldsymbol{\theta}_{tk} = \boldsymbol{\theta}_{t-1,k} + \boldsymbol{e}_{tk}, \quad \boldsymbol{e}_{tk} \sim N(\boldsymbol{0}, \boldsymbol{\Sigma}_{tk})$

- (m_{itj}, s_{itj}^2) : fixed values (prediction and its variance of log-intensity)
- $a_0 = (1/K, \dots, 1/K)$: it tends to produce empty clusters.

Posterior Computation (MCMC)

 Use the negative binomial approximation of the Poisson distribution with a large dispersion parameter (Hamura et al., 2025) and apply the Pólya-gamma (PG) augmentation (Polson et al., 2013).

$$\alpha_k(y_{it}|\mathbf{f}_{it},\boldsymbol{\theta}_{tk}) \approx \tilde{\alpha}_k(y_{it}|\mathbf{f}_{it},\boldsymbol{\theta}_{tk},r) = \frac{\Gamma(y_{it}+r)}{\Gamma(r)y_{it}!} \frac{(e^{\psi_{itk}})^{y_{it}}}{(1+e^{\psi_{itk}})^{y_{it+r}}}$$
$$= 2^{-b_{it}} \exp\left\{\kappa_{it}\psi_{itk}\right\} \int_0^\infty \exp\left\{-\frac{\omega_{itk}\psi_{itk}^2}{2}\right\} p(\omega_{itk}|b_{it},0)d\omega_{itk}$$

- $b_{it} = y_{it} + r$, $\kappa_{it} = (y_{it} r)/2$, $\psi_{itk} = \boldsymbol{\theta}_{tk}^{\top} \boldsymbol{F}_{it} \log r$
- ω_{itk} follows the PG distribution.
- The resulting joint distribution can be seen as a Gaussian dynamic linear model.
 - ⇒ Forward filtering and backward sampling can be applied.

Extension: MBPS with Heterogeneous Intercept (MBPSH)

- Intercept in BPS: adjusting the level of inadequacy of ensemble prediction
- MBPS assumes the same intercept within a cluster, which may be restrictive in practice.
- MBPS with heterogeneous intercept (MBPSH)

$$\begin{aligned} y_{it}|(z_i = k, \boldsymbol{\theta}_{tk}, \boldsymbol{f}_{it}, u_{it}) &\sim \operatorname{Po}(\exp(\boldsymbol{\theta}_{tk}^{\top} \boldsymbol{F}_{it} + u_{it})), \quad u_{it}|(z_i = k) \sim \textit{N}(0, \tau_{tk}^2), \\ \tau_{tk}^2 &= \frac{\beta_{\tau}}{\gamma_t} \tau_{t-1,k}^2, \quad \gamma_t \sim \operatorname{Beta}\left(\frac{\beta_{\tau} n_{t-1}}{2}, \frac{(1 - \beta_{\tau}) n_{t-1}}{2}\right). \end{aligned}$$

It can be regarded as an intermediate model between the univariate BPS and MBPS.

Analysis of COVID-19 Hospitalization in Japan

- Total number of inpatients including severe conditions, for n = 47 prefectureds in Japan
- Total data period: 2020/05/07 2022/11/23 (134 weeks)
- J = 4 (number of prediction models), K = 47 (maximum number of clusters)

Prediction steps

- The four agent models are estimated using the first 50 weeks up to 2021/04/14.
- MBPS is first run using the data from 2021/04/21 to 2022/03/30 (50 weeks) to produce one step (week) ahead forecast.
- By expanding the window of past data, the one step forecasts from 2022/04/06 to 2022/11/23 (34 weeks).

Agent Models

■ Model 1: Poisson dynamic generalized linear model (DGLM):

$$y_{it} \sim \text{Po}(\lambda_{it}), \quad \log \lambda_{it} = \mathbf{x}_{it}^{\top} \boldsymbol{\beta}_{it}, \quad \boldsymbol{\beta}_{it} \sim \textit{N}(\boldsymbol{\beta}_{i,t-1}, \boldsymbol{V}_{it})$$

where $\mathbf{x}_{it} = (1, \tilde{I}_{it}, \tilde{I}_{it}^2)$ and \tilde{I}_{it} is the log of the 7 days lag of the 14 days moving average of the number of infected.

Model 2: Poisson generalized additive model (GAM):

$$y_{it} \sim \text{Po}(\lambda_{it}), \quad \log \lambda_{it} = \mu + s(\tilde{I}_{it}) + s(t),$$

where s denotes the smoothing splines. The model is fitted by gam.

Agent Models

Model 3: Poisson integer autoregressive model (INAR):

$$y_{it} \sim \text{Po}(\lambda_{it}), \quad \log \lambda_{it} = \gamma_i y_{i,t-1} + \mathbf{x}_{it}^{\top} \boldsymbol{\beta}_i$$

where x is the same as DGLM. The model is fitted by tscount.

■ Model 4: Power-weighted Poisson-SIHR model:

$$p(y_{i,1:t}|\lambda_{T}) = \prod_{s=0}^{T} \left[\frac{\lambda_{i,T-s}^{y_{i,T-s}} e^{-\lambda_{i,T-s}}}{y_{i,T-s}!} \right]^{\rho_{s}}$$

 $\lambda_{i,T-s}$ is the solution of the SIHR (susceptible-infectious-hospitalized-recovered) model:

$$dS/dt = -\alpha I \cdot S/n, \quad dI/dt = \alpha I \cdot S/n - (\beta + \delta_I)I$$

$$dH/dt = \beta I - \delta_H H, \quad dR/dt = \delta_I I + \delta_H H$$

Comparative Methods

- MBPS, MBPSH (proposed methods)
- **BPS**: Univariate BPS (with count response) separately in each prefecture, with the same four models as MBPS and MBPSH.
- **FMPR**: Finite mixture of Poisson regression

$$y_{it}|(z_i = k) \sim \text{Po}(\exp(\mathbf{x}_{it}^{\top} \boldsymbol{\beta}_k)), \quad \mathbf{x}_{it} = (1, \tilde{I}_{it}, \tilde{I}_{it}^2, y_{i,t-1})^{\top}$$

 $\text{Pr}(z_i = k) = \pi_k, \quad k = 1, \dots, K$

Performance Measures

Cumulative absolute prediction errors (CAPE):

$$\mathsf{CAPE}_t = \sum_{i=1}^n \sum_{t^*=T}^t |y_{i,t^*+k} - \hat{y}_{i,t^*+k}|$$

Log predictive density ratios (LPDR):

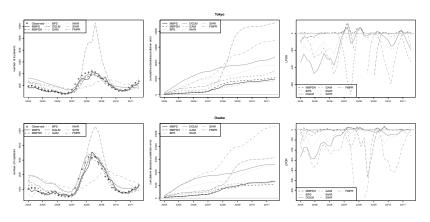
$$LPDR_t = \log \frac{p_j(y_{t+k}|y_{1:t})}{p_{MBPS}(y_{t+k}|y_{1:t})}$$

Coverage:

$$\frac{1}{T^*} \sum_{t} I\{y_{t+k} \in 95\% \text{ prediction interval}\}$$

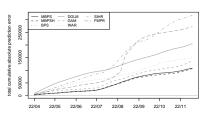
where T^* is the length of prediction periods.

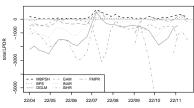
One-step-ahead forecasting (Tokyo, Osaka)



Predictions (left), CAPE (middle), LPDR (right)

One-step-ahead forecasting (Total)



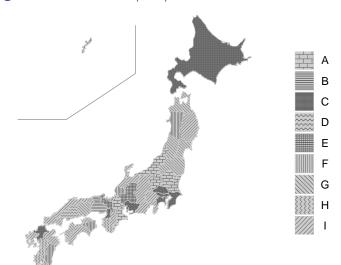


Coverage

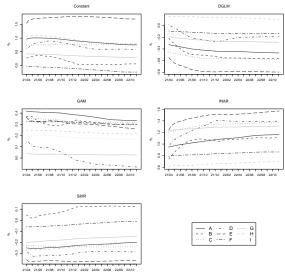
MBPS	MBPSH	BPS	DGLM	GAM	INAR	SIHR	FMPR
0.556	0.928	0.583	0.158	0.122	0.236	0.036	0.287

- The proposed methods provide better prediction accuracy.
- MBPSH provides much better coverage performance than MBPS.

Clustering Result on 2022/11/23



Synthesis weights by cluster



Summary

- Mixture of Bayesian predictive synthesis (MBPS)
 - BPS for multivariate time series, sharing the common synthesis weights in the same cluster
 - Introduction of heterogeneity in the intercept improves the coverage.
 - MBPS is useful for large-dimensional multivariate time series prediction.
- For more information:

Kobayashi, G., Sugasawa, S., Kawakubo, Y., Han, D. and Choi, T. (2024). Predicting COVID-19 hospitalisation using a mixture of Bayesian predictive syntheses. *The Annals of Applied Statistics* 18, 3383-3404.

Supplement: Analysis of COVID-19 Isolation in Korea

- Daily numbers of isolated cases by first division obtained from data.go.kr
- Total data period: 2020/08/01 2021/11/30 (487 days)
- K = n = 17
- Multistep-ahead forecasts

Coverage

<i>s</i> -step	MBPS	MBPSH	BPS	DGLM	GAM	INAR	SIHR	FMPR
s=1	0.918	0.964	0.932	0.605	0.169	0.848	0.028	0.351
s = 3	0.724	0.944	0.767	0.590	0.164	0.654	0.022	0.354
s = 7	0.637	0.953	0.697	0.575	0.169	0.456	0.028	0.360