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Bayesian Clustered Ensemble Prediction

Motivating Data

Weekly number of inpatients for COVID-19 by prefecture in Japan
(from April 2021 to November 2022)

47 prefectures are grouped by the means of the series. 27



Bayesian Clustered Ensemble Prediction

Motivating Data

Characteristics of the data
m Multiple time series count data for 47 prefectures

m Cross section and temporal correlation

Purpose of data analysis
m Precise future prediction on the number of inpatients

m Uncertainty quantification of the prediction
Strategy
m Ensemble prediction

In stead of relaying on a single model, combining multiple models is
known to improve predictive performance.
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Bayesian Clustered Ensemble Prediction

Bayesian Predictive Synthesis (BPS)
BPS for univariate time series, y; (t=1,...,T)
m J models (agents) with the predictive density, hy(fy) (j=1,...,J)

m General form of BPS (e.g. West, 1992; McAlinn and West, 2019)

J
P01 )= [ alyilf00) | ] hoty)| o

=1

- 0= (0w,0a,...,0): weights for J predictive models

- fo=(fa,...,fy)": draw from the predictive densities, regarded as
latent factors

- a(ys|f, 0:): synthesis function that controls how to combine J
predictions

m BPS includes existing ensemble methods (e.g. Bayesian model
averaging) by appropriately specifying the synthesis function.
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Bayesian Predictive Synthesis

Specification of the synthesis function

m Dynamic linear model with latent factor (McAlinn and West, 2019)

J
a(yelf, 0:) = ¢<Yr; 0 + Z 04, af), 0; ~ random walk
=1

=
@(x; a, b): normal density with mean a and variance b

m BPS for multivariate time series, y; (i=1,...,mt=1,...,T)
(McAlinn et al., 2020)

- Use multivariate dynamic linear models as the synthesis function.

- Computationally intensive when n is large (n = 47 in our example).

m Methodological motivation: Any scalable approach for multivariate
time series (of count)?
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Proposal: Mixture of BPS

Idea: (soft) clustering multiple time series in terms of model importance

m J predictive models with the predictive densities
h,'tj(f,'tj) (iZ 1,...,/7;_]: 1,,J)

= Mixture of BPS (MBPS)

alyielfie, 01,16, T1:K) Z uk(Yielfie, Oek) Z =1
k=1

- al(yi|fie, Ou): kth component of the synthesis function

- Oy: Parameters in the kth synthesis function

m MBPS reduces the number of parameters in multivariate BPS while
sharing cross sectional information
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Proposal: Mixture of BPS

Structure of MBPS

m For two time series i and 7 in the same cluster k, MBPS places the
same weight 84 on jth model whose forecasts are generally different
between i and /.

= Clustering n series in terms of the importance of the kth model

m Within the same cluster, the contribution of the models to the BPS
forecast is the same.

m The weights 6 are estimated from the set of time series belonging
to the same component.
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Bayesian Clustered Ensemble Prediction

Model Specification

m Consider a synthesis function based on the Poisson distribution as y;;
is count in our example.

m Cluster assignment indicator, z; € {1, ..., K} for each time series
m Hierarchical model of MBPS for count response
Yiel(zi = k, Ok, fir) ~ Po(exp(O;Fit)), Fi. = (1, fI)T
Prizi=k)=m, k=1,...,K, (m1,...,mK) ~ Dir(ap)
fiej ~ N(migj, Slgtj)y Ou=60c 14+ e, ey~ NO, Xy)

- (mi, s%): fixed values (prediction and its variance of log-intensity)

- a = (1/K,...,1/K): it tends to produce empty clusters.
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Posterior Computation (MCMC)

m Use the negative binomial approximation of the Poisson distribution
with a large dispersion parameter (Hamura et al., 2025) and apply the
Pélya-gamma (PG) augmentation (Polson et al., 2013).

M(yie + 1) (ewi:k)yit
r(r)y,-t! (1 + ewitk))’it+r

Oék(}/it‘f;'tq gtk) ~ &k()/it‘fr‘t; 0, r) =
oo 2
—b; Wi i
= 27" exp {kirthik } / exp {f % } Pwiek| bit, 0) dwitk
0

- bir = Yie + 1 Kie = ()/it - r)/2, Vijek = G&Fit — |Ogr
- wijw follows the PG distribution.

m The resulting joint distribution can be seen as a Gaussian dynamic
linear model.

= Forward filtering and backward sampling can be applied.
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Extension: MBPS with Heterogeneous Intercept (MBPSH)

m Intercept in BPS: adjusting the level of inadequacy of ensemble
prediction

m MBPS assumes the same intercept within a cluster, which may be
restrictive in practice.

m MBPS with heterogeneous intercept (MBPSH)

_)/it‘(zi = k, O, fi, Uit) ~ PO(eXP(O;lFit + Uit))7 Uit|(Zi = k) ~ N(Oa Tt2k)7

T T Ht— 1— T —
Tt2k = 677-1'2—1,10 Yt~ Beta (ﬁ fe-t ) ( ﬂ )nt 1) .
v 2 2

t

It can be regarded as an intermediate model between the univariate
BPS and MBPS.
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Analysis of COVID-19 Hospitalization in Japan

m Total number of inpatients including severe conditions, for n = 47
prefectureds in Japan

m Total data period: 2020/05/07 — 2022/11/23 (134 weeks)
m J =4 (number of prediction models), K = 47 (maximum number of
clusters)

m Prediction steps

- The four agent models are estimated using the first 50 weeks up to
2021/04/14.

- MBPS is first run using the data from 2021/04/21 to 2022/03/30
(50 weeks) to produce one step (week) ahead forecast.

- By expanding the window of past data, the one step forecasts from
2022/04/06 to 2022/11/23 (34 weeks).
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Agent Models

m Model 1: Poisson dynamic generalized linear model (DGLM):
Yit ~ PO()\it)> log \jx = X;lt— i Bie~ N(ﬂ,‘7t_17 ‘/It)

where x;; = (1,7,-t,7,?t) and Ty is the log of the 7 days lag of the 14
days moving average of the number of infected.

m Model 2: Poisson generalized additive model (GAM):
yie ~ Po(\i), log Nie = p + s(lir) + s(2),

where s denotes the smoothing splines. The model is fitted by gam.
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Agent Models
m Model 3: Poisson integer autoregressive model (INAR):
Yie ~ Po(Ait),  log Ait = 7iyie-1 + XIIB,'
where x is the same as DGLM. The model is fitted by tscount.
m Model 4: Power-weighted Poisson-SIHR model:
T [e ]
P(yivelAT) = g [y,r_s']

i T—s is the solution of the SIHR
(susceptible-infectious-hospitalized-recovered) model:

dS/dt = —al-S/n, dl/dt=al-S/n—(8+ 4!
dH/dt = Bl —oyH, dR/dt= 6,14 oyH
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Comparative Methods

= MBPS, MBPSH (proposed methods)

m BPS: Univariate BPS (with count response) separately in each
prefecture, with the same four models as MBPS and MBPSH.

m FMPR: Finite mixture of Poisson regression

yiel (zi = k) ~ Po(exp(xr B4)),  xie = (1, Tie, B yie-1) "
Pr(zz=k)=mk, k=1,...,K
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Performance Measures

m Cumulative absolute prediction errors (CAPE):

CAPE, = Z Z Vet = Pl

i=1 t*=T

m Log predictive density ratios (LPDR):

Pj(}/t+k|)/1:t)

LPDR; = log ————"—"—
PMBPS()/t+k|)/1:t)

m Coverage:

1
- Z I{ye+k € 95% prediction interval}
t

where T* is the length of prediction periods.
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One-step-ahead forecasting (Tokyo, Osaka)

Predictions (left), CAPE (middle), LPDR (right)
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One-step-ahead forecasting (Total)
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MBPS MBPSH BPS DGLM GAM INAR SIHR FMPR
0.556 0.928 0583 0.158 0.122 0.236 0.036 0.287

m The proposed methods provide better prediction accuracy.
m MBPSH provides much better coverage performance than MBPS.
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Clustering Result on 2022/11/23
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Synthesis weights by cluster
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Summary

m Mixture of Bayesian predictive synthesis (MBPS)

- BPS for multivariate time series, sharing the common synthesis
weights in the same cluster
- Introduction of heterogeneity in the intercept improves the coverage.

- MBPS is useful for large-dimensional multivariate time series
prediction.
m For more information:

Kobayashi, G., Sugasawa, S., Kawakubo, Y., Han, D. and Choi, T.
(2024). Predicting COVID-19 hospitalisation using a mixture of Bayesian
predictive syntheses. The Annals of Applied Statistics 18, 3383-3404.

20/21
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Supplement: Analysis of COVID-19 Isolation in Korea

Daily numbers of isolated cases by first division obtained from
data.go.kr

m Total data period: 2020/08/01 — 2021/11/30 (487 days)
K=n=17

Multistep-ahead forecasts

Coverage

sstep MBPS MBPSH BPS DGLM GAM INAR SIHR FMPR
s=1 0.918 0.964 0.932 0.605 0.169 0.848 0.028 0.351
s=3 0.724 0.944 0.767 0.590 0.164 0.654 0.022 0.354
s=7 0.637 0.953 0.697 0.575 0.169 0.456 0.028 0.360
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