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Bayesian Clustered Ensemble Prediction

Motivating Data
Weekly number of inpatients for COVID-19 by prefecture in Japan

(from April 2021 to November 2022)
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Bayesian Clustered Ensemble Prediction

Motivating Data

Characteristics of the data

Multiple time series count data for 47 prefectures
Cross section and temporal correlation

Purpose of data analysis

Precise future prediction on the number of inpatients
Uncertainty quantification of the prediction

Strategy

Ensemble prediction
In stead of relaying on a single model, combining multiple models is
known to improve predictive performance.
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Bayesian Clustered Ensemble Prediction

Bayesian Predictive Synthesis (BPS)
BPS for univariate time series, yt (t = 1, . . . ,T)

J models (agents) with the predictive density, htj(ftj) (j = 1, . . . , J)
General form of BPS (e.g. West, 1992; McAlinn and West, 2019)

p(yt|θt, 1 : t) =
∫

α(yt|ft,θt)

 J∏
j=1

htj(ftj)

 dft

- θt = (θt0, θt1, . . . , θtJ): weights for J predictive models
- ft = (ft1, . . . , ftJ)

⊤: draw from the predictive densities, regarded as
latent factors

- α(yt|ft,θt): synthesis function that controls how to combine J
predictions

BPS includes existing ensemble methods (e.g. Bayesian model
averaging) by appropriately specifying the synthesis function.
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Bayesian Clustered Ensemble Prediction

Bayesian Predictive Synthesis
Specification of the synthesis function

Dynamic linear model with latent factor (McAlinn and West, 2019)

α(yt|ft,θt) = ϕ
(

yt; θt0 +
J∑

j=1
θtjftj, σ2

t

)
, θt ∼ random walk

ϕ(x; a, b): normal density with mean a and variance b

BPS for multivariate time series, yit (i = 1, . . . , n; t = 1, . . . ,T)
(McAlinn et al., 2020)

- Use multivariate dynamic linear models as the synthesis function.
- Computationally intensive when n is large (n = 47 in our example).

Methodological motivation: Any scalable approach for multivariate
time series (of count)?
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Bayesian Clustered Ensemble Prediction

Proposal: Mixture of BPS

Idea: (soft) clustering multiple time series in terms of model importance
J predictive models with the predictive densities
hitj(fitj) (i = 1, . . . , n; j = 1, . . . , J).
Mixture of BPS (MBPS)

α(yit|fit,θt,1;K, π1:K) =
K∑

k=1
πkαk(yit|fit,θtk),

K∑
k=1

πk = 1

- αk(yit|fit,θtk): kth component of the synthesis function
- θtk: Parameters in the kth synthesis function

MBPS reduces the number of parameters in multivariate BPS while
sharing cross sectional information
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Bayesian Clustered Ensemble Prediction

Proposal: Mixture of BPS

Structure of MBPS

For two time series i and i′ in the same cluster k, MBPS places the
same weight θtjk on jth model whose forecasts are generally different
between i and i′.
⇒ Clustering n series in terms of the importance of the kth model
Within the same cluster, the contribution of the models to the BPS
forecast is the same.
The weights θtk are estimated from the set of time series belonging
to the same component.
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Bayesian Clustered Ensemble Prediction

Model Specification

Consider a synthesis function based on the Poisson distribution as yit
is count in our example.
Cluster assignment indicator, zi ∈ {1, . . . ,K} for each time series
Hierarchical model of MBPS for count response

yit|(zi = k,θtk, fit) ∼ Po(exp(θ⊤
tkFit)), Fit = (1, f⊤it )⊤

Pr(zi = k) = πk, k = 1, . . . ,K, (π1, . . . , πK) ∼ Dir(a0)

fitj ∼ N(mitj, s2
itj), θtk = θt−1,k + etk, etk ∼ N(0,Σtk)

- (mitj, s2
itj): fixed values (prediction and its variance of log-intensity)

- a0 = (1/K, . . . , 1/K): it tends to produce empty clusters.
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Bayesian Clustered Ensemble Prediction

Posterior Computation (MCMC)

Use the negative binomial approximation of the Poisson distribution
with a large dispersion parameter (Hamura et al., 2025) and apply the
Pólya-gamma (PG) augmentation (Polson et al., 2013).

αk(yit|fit,θtk) ≈ α̃k(yit|fit,θtk, r) =
Γ(yit + r)
Γ(r)yit!

(eψitk)yit

(1 + eψitk)yit+r

= 2−bit exp {κitψitk}
∫ ∞

0
exp

{
−ωitkψ

2
itk

2

}
p(ωitk|bit, 0)dωitk

- bit = yit + r, κit = (yit − r)/2, ψitk = θ⊤
tkFit − log r

- ωitk follows the PG distribution.

The resulting joint distribution can be seen as a Gaussian dynamic
linear model.
⇒ Forward filtering and backward sampling can be applied.
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Bayesian Clustered Ensemble Prediction

Extension: MBPS with Heterogeneous Intercept (MBPSH)

Intercept in BPS: adjusting the level of inadequacy of ensemble
prediction
MBPS assumes the same intercept within a cluster, which may be
restrictive in practice.
MBPS with heterogeneous intercept (MBPSH)

yit|(zi = k,θtk, fit, uit) ∼ Po(exp(θ⊤
tkFit + uit)), uit|(zi = k) ∼ N(0, τ 2

tk),

τ 2
tk =

βτ
γt
τ 2

t−1,k, γt ∼ Beta
(
βτnt−1

2 ,
(1 − βτ )nt−1

2

)
.

It can be regarded as an intermediate model between the univariate
BPS and MBPS.
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Bayesian Clustered Ensemble Prediction

Analysis of COVID-19 Hospitalization in Japan

Total number of inpatients including severe conditions, for n = 47
prefectureds in Japan
Total data period: 2020/05/07 – 2022/11/23 (134 weeks)
J = 4 (number of prediction models), K = 47 (maximum number of
clusters)
Prediction steps

- The four agent models are estimated using the first 50 weeks up to
2021/04/14.

- MBPS is first run using the data from 2021/04/21 to 2022/03/30
(50 weeks) to produce one step (week) ahead forecast.

- By expanding the window of past data, the one step forecasts from
2022/04/06 to 2022/11/23 (34 weeks).
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Bayesian Clustered Ensemble Prediction

Agent Models

Model 1: Poisson dynamic generalized linear model (DGLM):

yit ∼ Po(λit), log λit = x⊤it βit, βit ∼ N(βi,t−1,Vit)

where xit = (1, Ĩit, Ĩ2it) and Ĩit is the log of the 7 days lag of the 14
days moving average of the number of infected.
Model 2: Poisson generalized additive model (GAM):

yit ∼ Po(λit), log λit = µ+ s(̃Iit) + s(t),

where s denotes the smoothing splines. The model is fitted by gam.
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Agent Models
Model 3: Poisson integer autoregressive model (INAR):

yit ∼ Po(λit), log λit = γiyi,t−1 + x⊤it βi

where x is the same as DGLM. The model is fitted by tscount.

Model 4: Power-weighted Poisson-SIHR model:

p(yi,1:t|λT) =
T∏

s=0

[
λ

yi,T−s
i,T−se−λi,T−s

yi,T−s!

]ρs

λi,T−s is the solution of the SIHR
(susceptible-infectious-hospitalized-recovered) model:

dS/dt = −αI · S/n, dI/dt = αI · S/n − (β + δI)I
dH/dt = βI − δHH, dR/dt = δII + δHH
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Comparative Methods

MBPS, MBPSH (proposed methods)

BPS: Univariate BPS (with count response) separately in each
prefecture, with the same four models as MBPS and MBPSH.

FMPR: Finite mixture of Poisson regression

yit|(zi = k) ∼ Po(exp(x⊤it βk)), xit = (1, Ĩit, Ĩ2it, yi,t−1)
⊤

Pr(zi = k) = πk, k = 1, . . . ,K
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Bayesian Clustered Ensemble Prediction

Performance Measures
Cumulative absolute prediction errors (CAPE):

CAPEt =
n∑

i=1

t∑
t∗=T

|yi,t∗+k − ŷi,t∗+k|

Log predictive density ratios (LPDR):

LPDRt = log
pj(yt+k|y1:t)

pMBPS(yt+k|y1:t)

Coverage:

1
T∗

∑
t

I {yt+k ∈ 95% prediction interval}

where T∗ is the length of prediction periods.
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Bayesian Clustered Ensemble Prediction

One-step-ahead forecasting (Tokyo, Osaka)
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One-step-ahead forecasting (Total)
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The proposed methods provide better prediction accuracy.
MBPSH provides much better coverage performance than MBPS.
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Clustering Result on 2022/11/23
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Synthesis weights by cluster
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Bayesian Clustered Ensemble Prediction

Summary

Mixture of Bayesian predictive synthesis (MBPS)
- BPS for multivariate time series, sharing the common synthesis

weights in the same cluster
- Introduction of heterogeneity in the intercept improves the coverage.
- MBPS is useful for large-dimensional multivariate time series

prediction.

For more information:
Kobayashi, G., Sugasawa, S., Kawakubo, Y., Han, D. and Choi, T.
(2024). Predicting COVID-19 hospitalisation using a mixture of Bayesian
predictive syntheses. The Annals of Applied Statistics 18, 3383-3404.
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Supplement: Analysis of COVID-19 Isolation in Korea

Daily numbers of isolated cases by first division obtained from
data.go.kr
Total data period: 2020/08/01 – 2021/11/30 (487 days)
K = n = 17
Multistep-ahead forecasts

Coverage
s-step MBPS MBPSH BPS DGLM GAM INAR SIHR FMPR
s = 1 0.918 0.964 0.932 0.605 0.169 0.848 0.028 0.351
s = 3 0.724 0.944 0.767 0.590 0.164 0.654 0.022 0.354
s = 7 0.637 0.953 0.697 0.575 0.169 0.456 0.028 0.360
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